

Radiation Monitoring at the Tevatron

What is Radiation Monitoring?

If you know the enemy and you know yourself, you need not fear the result of a hundred battles – Sun-Tzu (ca.400 BC)

Operational Definition:

Monitor any beam induced conditions which affect the performance, reliability, lifetime of detectors or infrastructure.

Methods adopted at CDF (D0):

- Record/Monitor beam conditions and radiation.
 - real time and samples
- Evaluate the radiation field.
 - measurements and simulation
- Modify conditions to reduce risk.
 - modify/abort the beam (beam position, tune, collimator positions)
 - modify the conditions in the monitored region (shielding)

Radiation Monitoring at CDF

Initial Goals:

- Measure distribution and rates of radiation
- Provide early estimate of Si tracker lifetime

Secondary Goals:

- Identify/evaluate radiation sources in/near CDF
- Eliminate/reduce failures in electronics
- Additional instrumentation for the accelerator

Monitoring Technologies:

- Thermal Luminescent Dosimeters (TLDs)
- Silicon PIN diodes
- **lonization chambers**
- Silicon detectors
- Scintillation counters
- Other beam monitors

Beam Structure Tevatron

CDF B0

CDF BC

CDF ABORT

 36 Ins bunches in 3x12 bunch trains (396ns bunch spacing)

• 2.2µs space between bunch trains

- * Monitor losses (in time with beam)
- * Monitor beam in abort gaps
- > Fast detectors & electronics

CDF-II Detector (G-rated)

Measuring the Radiation Field

Thermal Luminescent Dosimeters (TLDs)

Advantages:

- + passive
- + large dynamic range(10-3-102 Gy)
- + good precision (<1%)
- + absolute calibration
- + γ,n measurements
- + redundancy

Disadvantages:

- harvest to read
- large amount of handling
- non linearity at high doses
- only measure "thermal" neutrons

Good for accurate, low-medium dose evaluation

Radiation from Collisions

TLD measurements + model r measured transverse to the beam

Radiation from Beam Losses

TLD measurements + model r measured transverse to the beam

Silicon Detector Dose (Damage)

Measure I_{bias}

- correct Temp. to 20C
- $\alpha_{\text{damage}} = 3.0 \times 10^{17} \text{A/cm}$

Early comparison with TLD Data

- Assume $r^{-\alpha}$ scaling
- IGy=3.8×10⁹ MIPS/cm²

Temp profile of SVX sensors poorly understood.

Update with full tracker in 2005. P. Dong

Note: Beam offset 5mm from detector axis

Simulated Ionizing Radiation

MARS simulation of CDF

- Collisions simulated by DPMJET
- Simulation scaled up 2x for plot (check shape)

Missing Material?

- electronics
- cables
- cooling
- + Qualitative understanding of collision dose (dominant)
- Losses not understood!

Measure Larger Accumulated Doses

PIN Diodes

Advantages:

- passive/active
- in-situ readout
- large dynamic range $(10^2 - 10^5 \text{Gy})$

Disadvantages:

- Temperature/history dependent
- Calibrate in-situ
- active operation needs periodic calibration

DØ (Active)

Monitor Dose to Si Tracker

TLD Data: Spatial distribution of ionizing radiation.

PIN Diodes: Use increase in bias current as scale to get delivered dose.

- T corrected to 20 C
- Diodes used passively
- I/V curves taken monthly
- Si dose ~2.1 kGy @ r=3cm

Dose rate and distribution as expected.

Diamond in CDF

supplemental real time radiation measurement

Status: Installed 10/04
Leakage current measurement
<IpA

diamond

R. Wallny, P. Dong

Measuring Beam Losses/Halo

Beam Losses all calculated in the same fashion

- Detector signal in coincidence with beam passing the detector plane.
- ACNET variables differ by detector/gating method.
- Gate on bunches and abort gaps.

Detectors

Halo Counters

Beam Shower Counters

ACNET variables:

B0PHSM: beam halo

BOPBSM: abort gap losses

B0PAGC: 2/4 coincidence abort gap losses

BOPLOS: proton losses (digital)

LOSTP: proton losses (analog)

B0MSC3: abort gap losses (E*W coincidence)

Beam Monitors

BSC counters: monitor beam losses and abort gap

Halo counters: monitor beam halo and abort gap

Recording "Fast" Signals

Diagnose beam problems Reduce risk of accident!

Activation Background in Counters

Activated quadrupole steel

- Periods of sustained high losses
- Large beam "accident"
- β radiation mostly
- Lose timing info
- Contaminate measurement

Majority 2/4 coincidence

- + Reduces contamination
- + Reduces overall rate
- Insensitive to single particles

New Halo/Loss System in 2005

FIFOs

2 Counter coincidence

- Suppress backgrounds
- Calibrate in situ

Additional Electronics

- Digitize every bunch
- Deep FIFO (record several revolutions)

Reconstruct "accidents"

CDF VME Power Supply Failures

Failure Characteristics

- Position Dependent
- Beam Related
- Catastrophic
- Switching supplies only
- failure rate ~3/week
- 12 supplies failed in 1 day
- SVX Readout

Failure Locations

Radiation Source?

- Counter measurements show low beta quadrupoles form a line source of charged particles.
- Power supply failure analysis shows largest problem on the west (proton) side of the collision hall.

Radiation Shielding?

Install shielding to reduce radiation from low beta quadrupoles.

Reduces solid angle seen by power supplies by 25%

What do measurements tell us?

CDF Detector w/ additional shielding

Collision Hall Ionizing Radiation Field

960 dosimeters installed in 160 locations Radiation field modeled by a power law

$$Dose = \frac{A}{r^{\alpha}}$$

r is distance from beam axis

Rdose₂ (rad/pb⁻¹)

23

Collision Hall Ionizing Radiation Field

Shielding effectiveness

- Ionizing radiation reduced by 20-30% near affected power supplies
- What about neutrons?

Neutron Spectrum Measurement

Evaluate Neutron Energy Spectrum

- Bonner spheres + TLDs
- ~I week exposures
- Shielding in place

Measuring neutrons is hard! Work in progress...

Polyethylene "Bonner" spheres

Neutron Data

Compare data with ²⁵²Cf

- spontaneous fission
- ~20 n/decay
- $\langle E_n \rangle \sim 2 \text{ MeV}$

Data show average $E_n < 2 \text{ MeV}$

To do:

- understand E_n distribution
- neutron fluence

W. Schmitt, et al.

Summary

Multiple techniques to monitor radiation

- TLDs
- Silicon diodes
- Ionization chambers
- Scintillation counters
- Complimentary and redundant information

New systems to supplement information

- Diamond detector
- New counters & electronics

References (Incomplete List)

General:

- http://ncdf67.fnal.gov/~tesarek
- http://www-cdfonline.fnal.gov/acnet/ACNET_beamquality.html

Single Event Burnout:

- R.J. Tesarek, C. Rivetta, R. Nabora, C. Rott, CDF internal note, CDF 5903.
- C. Rivetta, B. Allongue, G. Berger, F. Faccioi, W. Hajdas, **FERMILAB-Conf-01/250E**, September 2001.
- J.L.Titus, C.F. Wheatly, *IEEE Trans. Nucl Sci.*, **NS-43**, (1996) 553.

CDF Instrumentation:

- M.K. Karagoz-Unel, R.J. Tesarek, Nucl. Instr. and Meth., A506 (2003) 7-19.
- A.Bhatti, et al., CDF internal note, CDF 5247.
- D. Acosta, et al., Nucl. Instr. and Meth., A494 (2002) 57-62.

Beam Halo and Collimation:

- A. Drozhdin, et al., Proceedings: Particle Accelerator Conference(PAC03), Portland, OR, 12-16 May 2003.
- L.Y. Nicolas, N.V. Mokhov, Fermilab Technical Memo: **FERMILAB-TM-2214** June (2003).

Radiation:

- D.Amidei, et al., Nucl. Instr. and Meth., **A320** (1994) 73.
- K. Kordas, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, November 19-25 (2003).
- R.J. Tesarek, et al., Proceedings: IEEE-NSS/MIC Conference, Portland, OR, November 19-25 (2003).
- http://ncdf67.fnal.gov/~tesarek/radiation

Backup Slides

Typical Store

Beam Parameters:

Protons: 5000 - 9000 10^9 particles Antiprotons: 100-1500 10^9 particles Luminosity: 10 - 100 10^{30} cm $^{-2}$ s $^{-1}$ Duration 10-30 hours

Losses and Halo:

	Rate	Limit	
Quantity	(kHz)	(kHz)	comment
P Losses	2 - 15	25	chambers trip on over current
Pbar Losses	0.1 - 2.0	25	chambers trip on over current
P Halo	200 - 1000	-	
Pbar Halo	2 - 50	-	
Abort Gap Losses	2 - 12	15	avoid dirty abort (silicon damage)
LI Trigger	0.1-0.5		two track trigger (~I mbarn)

Note: All number are taken after scraping and HEP is declared.

Monitor Experience

"Typical good store"

proton beam current

proton abort gap proton halo

proton losses

Beam Collimation

Background reduction at work

E0 collimator

proton beam current

proton halo proton losses

Halo Reduction

Vacuum problems identified in 2m long straight section of Tevatron (F sector)

Improved vacuum (TeV wide)

Commissioning of collimators to reduce halo

> Physics backgrounds reduced by ~40%

R. Moore, V. Shiltsev, N.Mokhov, A. Drozhdin

Beam Halo Counters

Run I Shielding

Run I Shielding

Detector configuration different in Run II

- Run I detector "self shielded"
- Additional shielding abandoned (forward muon system descoped).
- Shielding installed surrounding beam line.

Evaluation of shielding continues

L.V. Power Supply Failures

Power Factor Corrector Circuit

Most failures were associated with high beam losses or misaligned beam pipe

> Power MOSFET Single Event Burnout (SEB)

epoxy covering fractured

silicon in MOSFET sublimated during discharge through single component

St Catherine's Day Massacre

12 switching power supplies failed in an 8 hour period.

- only during beam
- only switching supplies
- failures on detector east side
- shielding moved out
- new detector installed
- beam pipe misaligned

Conclusion: Albedo radiation from new detector

